#C-Sharp #C# #AI #ChatGPT
I recently started using ChatGPT and my own local Ollama server. The code is generally pretty good, and requires some tweaking, as you'd suspect. For example, here is a code snippet of ChatGPT trying to show how to perform Name Entity Recognition.
using Microsoft.SemanticKernel;
using Microsoft.SemanticKernel.ChatCompletion;
#pragma warning disable SKEXP0070
// Create two kernels for each model
var intentKernel = Kernel.CreateBuilder()
.AddOllamaChatCompletion(
modelId: "llama3.2:latest",
endpoint: new Uri("http://192.168.2.19:11434"))
.Build();
var nerKernel = Kernel.CreateBuilder()
.AddOllamaChatCompletion(
modelId: "ner-model:latest",
endpoint: new Uri("http://192.168.2.19:11434"))
.Build();
var aiIntentService = intentKernel.GetRequiredService<IChatCompletionService>();
var aiNerService = nerKernel.GetRequiredService<IChatCompletionService>();
var chatHistory = new ChatHistory();
while (true)
{
// Step 1: Get user prompt and classify intent
Console.WriteLine("Your prompt:");
var userQuestion = Console.ReadLine();
var intentPrompt = $"Classify the intent of the following question into categories like 'financial', 'person', 'sports', 'weather', 'news', or 'general', but only return the intent, nothing else: {userQuestion}";
chatHistory.Add(new ChatMessageContent(AuthorRole.User, intentPrompt));
// Stream the intent classification response using the intent model
Console.WriteLine("AI Intent Classification Response:");
var intentResponse = "";
await foreach (var item in aiIntentService.GetStreamingChatMessageContentsAsync(chatHistory))
{
Console.Write(item.Content);
intentResponse += item.Content;
}
chatHistory.Add(new ChatMessageContent(AuthorRole.Assistant, intentResponse.Trim()));
Console.WriteLine();
// Step 2: If the intent is relevant, extract entities using the NER model
if (intentResponse.Trim().ToLower() == "sports")
{
// Construct the NER prompt for sports-related entities
var nerPrompt = $"Identify key entities in the following question: \"{userQuestion}\". " +
"Return entities in the format: EntityType: Entity. " +
"For example, 'Team: Chicago Bears', 'Date: Yesterday'.";
// Use the NER kernel for the NER request
var nerChatHistory = new ChatHistory();
nerChatHistory.Add(new ChatMessageContent(AuthorRole.User, nerPrompt));
// Stream the NER response using the NER model
Console.WriteLine("AI NER Response:");
var nerResponse = "";
await foreach (var item in aiNerService.GetStreamingChatMessageContentsAsync(nerChatHistory))
{
Console.Write(item.Content);
nerResponse += item.Content;
}
chatHistory.Add(new ChatMessageContent(AuthorRole.Assistant, nerResponse.Trim()));
Console.WriteLine();
// Parse entities (optional)
}
else
{
Console.WriteLine($"No relevant entities to extract for intent: {intentResponse}");
}
Console.WriteLine();
}
This code works in the basic sense, but it needs to be tweaked even more. I fed it a copy of my code up to this point, and it did not directly integrate with my project. I had to re-work it quite a bit. It made for a great start, but it still took me a few hours to get it to work the way it needed to.